VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) III-Semester Main Examinations, December-2018

Introduction to Data Structures

(Open Elective-I)

Time: 3 hours

Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.No.	Stem of the question	M	L	CO	PO
	$Part-A (10 \times 2 = 20 Marks)$				
1.	What are the advantages of linked lists over arrays?	2	2	1	1
2.	Write a function to store the 'x' student information in the beginning of a linked list which maintains student's information. (roll no, marks).	2	3	1	2
3.	Write a function to check whether circular queue is full or not.	2	2	2	2
4.	Find the content of a stack after doing following operations push(13) push(25) push(63) push(97) pop() pop() push(20) push(80)	2	2	2	2
5.	Define the Binary search tree and give example.	2	2	3	1
6.	Find the maximum and minimum number of edges of connected graph with 4 vertices and draw the graph for both	2	2	3	1
7.	Define space complexity.	2	2	4	1
8.	Specify the time complexity of the looping structure which prints numbers from 1 to 'n'	2	3	4	2
9.	Write the function to search for an element when array elements are in the sorted order.	2	3	1	2
10.	Find the pre-order traversal of the given tree:	2	3	3	2
	(4) (8) (15) (21)				
	O O O O	1111			
	$Part-B (5 \times 8 = 40 Marks)$	ULE	1111		
11. a)	What is sparse matrix? How it can be represented efficiently Give example	4	3	1	1
b)	Write the function to insert the element at the end of the circular linked list.	4	2	1	1
12. a)	What is queue? Write a program to implement insert and delete operation for linear queue.	4	2	2	1
b)	stack content after each operator read from given expression and output expression.	4	3	2	2
	(a+b*c)-(e*f+g)/h+i				

3. a)	Show the tree structure after inserting element 65 and deleting an element 30 from the given BST.	4	2	3	1
	30	٨			
	15 80				
	7 22 45 75				
	27) 27)				
b)	Represent the given graph as adjacency matrix and as adjacency list.	4	3	3	1
	6 3				
14. a)	Find the time complexity of the function which finds the factorial of a given number.	4	3	4	1
b)	Specify the different Asymptotic notations used for finding the complexity of the algorithms.	4	2	4	1
15. a)	Write a function to insert the element 'x' into an array at kth position.	4	2	1	1
b)	Write a function to display the alternate element of the linked list which stores the cost of the items.	4	2	1	2
16. a)	Construct a BST for the following set of elements.	4	3	3	2
b)		4	3	3	2
	B				
	C D B				
	F				
17.	Answer any two of the following:				
a)		4	2	1	1
b)		4	2	3	1
	In-order: A, B C D E F and Post-order: F E D C B A				
c)	Write a function to evaluate the postfix expression using stack operations.	4	2	2	2

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage	
1	Fundamental knowledge (Level-1 & 2)	60	
2	Knowledge on application and analysis (Level-3 & 4)	40	
3	*Critical thinking and ability to design (Level-5 & 6)		
	(*wherever applicable)		